全固态电池
由于种种原因,我接触的全固态电池较少,故而借用行业前辈的一些文章,给大家展示一下全固态电池的概述和现状。目前,大力发展新能源汽车已成为各国实现节能减排、应对气候变化的共识,很多国家更是将发展新能源汽车上升到国家战略高度。美国、欧洲、日本等国的各大汽车集团均推出各自的发展计划。尤其是 2016 年以来,主要汽车强国更是纷纷加大新能源汽车产业的支持力度。
然而,目前电动汽车的规模化应用仍受制于续驶里程、安全性、充电时间、成本等多项制约,例如针对车辆的续驶里程,若单纯增加电池数量,会造成整车增重,进而造成百公里电耗的明显增加,整车售价也会水涨船高。安全性是我们最关注的一个问题,采用安全性较高的磷酸铁锂电池,但续航里程又跟不上,因此根本解决策略仍需大幅提升电池的各方面性能。美国特斯拉推出的 Modle S 电动汽车,采用了近 7000个 3.1 Ah 的 18650 圆柱型锂离子电池,其续航里程达到 400 km 以上,但是其电池重量达到 500 kg,汽车的售价高达 7.9 万美元,种种约束条件限制了新能源汽车的推广。
我们需要一次较大的突破,归根结底,需要电池材料体系的重大变革,最好可以带来数量级的变化。从第一代的镍氢电池和锰酸锂电池,第二代的磷酸铁锂电池,到目前广为使用的第三代三元电池,其能量密度和成本分别呈现出阶梯式上升和下降的趋势。那么实现 2020 ~ 2025 年的电池目标用电池选用何种电池体系?
目前,根据各高校、研发机构和企业,全固态锂电池这个名词,广泛出现在大众视野中,这就是2020年-2015年新一轮的锂电风暴?他到底有什么神秘之处。今天我就带大家去初步了解一下全固态锂电池。
1. 全固态锂电池的概述
传统锂离子电池采用有机液体电解液,在过度充电、内部短路等异常的情况下,电池容易发热,造成电解液气胀、分解、自燃甚至爆炸,存在严重的安全隐患,这也是目前三元材料的一个短板。而基于固体电解质的全固态锂电池,采用固体电解质,不含易燃、易挥发组分,彻底消除电池因漏液引发的电池冒烟、起火等安全隐患,被称为最安全电池体系。
对于能量密度,中、美、日三国政府希望在 2020 年开发出 400~500 Wh/kg 的原型器件,2025~2030 年实现量产。根据目前材料体系发展路线,最有可能的就是金属锂负极的使用,金属锂在传统液态锂离子电池中存在枝晶、粉化、SEI不稳定、表面副反应多等诸多技术问题,而固态电解质与金属锂的兼容性使得使用锂作负极成为可能,从而显著实现能量密度的提升。
从出现的时间节点来看,全固态金属锂电池要早于液态锂离子电池,只不过在早期,全固态金属锂电池的电化学性能、安全性、工程化制造方面一直无法满足应用要求。液态锂离子电池通过不断改进,综合技术指标逐渐满足消费电子类市场应用需求,后来被更多的市场所接受。从技术发展趋势来看,相比液态锂离子电池,全固态金属锂电池有可能具有安全性能好、能量密度高和循环寿命长等优点。
2. 全固态锂二次电池可能具备的优势
全固态锂电池相比于液态锂离子电池所具有的优势包括:
(1) 安全性能高
由于液态电解质中含有易燃的有机溶剂,发生内部短路时温度骤升容易引起燃烧,甚至爆炸,需要安装抗温升和防短路的安全装置结构,这样会增加成本,但仍无法彻底解决安全问题。号称BMS做到全球最好的特斯拉,在今年仅国内就有Model S发生严重起火事件。
很多无机固体电解质材料不可燃、无腐蚀、不挥发、不存在漏液问题,也有望克服锂枝晶现象,因而基于无机固体电解质的全固态锂二次电池有望具有很高的安全特性。聚合物固体电解质仍然存在一定的可燃烧风险,但相比于含有可燃溶剂的液态电解液电池,安全性也有较大提高。
(2) 能量密度高
目前,市场中应用的锂离子电池电芯能量密度最高达到300Wh/kg左右。对全固态锂电池来说,如果负极采用金属锂,电池能量密度有望达到300-400Wh/kg,甚至更高。需要说明的是,由于固体电解质密度高于液态电解质,对于正负极材料一样的体系,液态电解质的锂电池能量密度要显著高于全固态锂电池。之所以说全固态锂二次电池能量密度高,是因为负极可能采用金属锂材料。
(3) 循环寿命长
固体电解质有望避免液态电解质在充放电过程中持续形成和生长固体电解质界面膜的问题和锂枝晶刺穿隔膜问题,有可能大大提升金属锂电池的循环性和使用寿命。
(4) 工作温度范围宽
全固态锂电池如果全部采用无机固体电解质,最高操作温度有望提高到300℃甚至更高,目前,大容量全固态锂电池的低温性能有待提高。具体电池的工作温度范围,主要与电解质及界面电阻的高低温特性有关。
(5) 电化学窗口宽
全固态锂电池的电化学稳定窗口宽,有可能达到5V,适应于高电压型电极材料,有利于进一步提高能量密度。目前主流的三元电池在4.2V-4.5V之间。
(6) 具备柔性优势
全固态锂电池可以制备成薄膜电池和柔性电池,未来可应用于智能穿戴和可植入式医疗设备等。相对于柔性液态电解质锂电池,封装更为容易、安全。
3 全固态锂二次电池目前存在的缺陷和部分解决方案
虽然全固态锂二次电池在多方面表现出明显优势,但同时也有一些迫切需要解决的问题,针对这些问题,工程师们进行了各种尝试,并给出了部分可能的解决途径如下表所示:
4. 核心材料
(1). 固体电解质
固体电解质是全固态锂二次电池的核心部件,其进展直接影响全固态锂二次电池产业化的进程。目前固体电解质的研究主要集中在三大类材料:聚合物、氧化物和硫化物。
聚合物固体电解质(SPE),由聚合物基体(如聚酯、聚醚和聚胺等)和锂盐(如LiClO4、LiAsF6、LiPF6等)构成,自从1973年P. V. Wright在碱金属盐复合物中发现离子导电性后,聚合物材料由于其质量较轻、弹性较好、机械加工性能优良的固态电化学特性而受到广泛关注。SPE也是最早实现实际应用的固体电解质。
氧化物固体电解质按照物质结构可以分为晶态和非晶态两类,其中晶态电解质包括钙钛矿型、反钙钛矿型、石榴石型、NASICON型、LISICON型等,非晶态氧化物的研究热点是用在薄膜电池中的LiPON型电解质和部分晶化的非晶态材料。
硫化物固体电解质是由氧化物固体电解质衍生出来的,电解质中的氧化物机体中氧元素被硫元素所取代。由于硫元素的电负性比氧元素要小,对锂离子的束缚要小,有利于得到更多自由移动的锂离子。同时,硫元素的半径比氧元素要大,当硫元素取代氧元素时使晶格结构扩展,形成较大的锂离子通道而提升导电率,室温下可达10-4-10-2S/cm。
(2). 正极材料
全固态锂二次电池的正极一般采用复合电极,除了电极活性物质外还包括固体电解质和导电剂,在电极中起到同时传输离子和电子的作用。LiCoO2、LiFePO4、LiMn2O4研究较为普遍,后期可能开发高镍层状氧化物、富锂锰基及高电压镍锰尖晶石型正极,也同时应关注不含锂的新型正极材料的研究和开发。
(3). 负极材料
全固态锂二次电池的负极材料目前主要集中在金属锂负极材料、碳族负极材料和氧化物负极材料三大类,三大材料各有优缺点,其中金属锂负极材料因其高容量和低电位的优点成为全固态锂电池最主要的负极材料之一。
5 全固态锂二次电池容量划分及对应应用领域与制备工艺
因这块量产的较少,工艺系那个对不成熟,我借鉴了同行的文章描述这个制造工艺。从全固态锂二次电池的形态上可以分成薄膜型和大容量型两大类。各类型全固态锂电池的电芯封装技术大同小异,主要差别在于极片和电解质膜片的制备。
薄膜型全固态锂二次电池在衬底上将电池的各种元素按照正极、电解质、负极的顺序依次制备成薄膜、最后封装成一个电池。在制备过程中需要采用相对应的技术分别制备电池各薄膜层,一般来说负极选择金属锂居多,采用真空热气相沉积(VD)技术制备;电解质和正极包括氧化物的负极可以采用各种溅射技术,如射频溅射(RFS)、射频磁控溅射(RFMS)等,目前也有研究用3D打印技术来制备薄膜。
大容量全固态锂二次电池,由于应用面宽,市场很大,需要能快速、低成本的规模制备,在液态锂离子电池中广泛使用的高速挤压涂布或喷涂技术可以借鉴。基于聚合物固体电解质的大容量全固态锂二次电池制备与现有锂离子电池的卷绕工艺接近。但是,考虑到目前无机固体电解质膜的柔韧性不佳,在制备全固态锂二次电池时更多的采用叠片工艺,至于具体是分别制备电解质与正负极膜片后叠合,还是采用双层或多层一次涂布制备电解质和正极的复合层,更适合规模化生产的技术路线还有待进一步的研究。
全固态锂二次电池的生产设备虽然与传统锂离子电池电芯生产设备有较大差别,但从客观上看也不存在革命性的创新,可能80%的设备可以延续锂离子电池的生产设备,只是在生产环境上有了更高的要求,需要在更高级别的干燥间(全线露点-40℃以下)内进行生产,这对于具备超级电容器、锂离子电容器、镍钴铝、预锂化、钛酸锂等空气敏感储能器件或材料的企业来说,制造环境可以兼容,但相应的生产环境成本显著提高。
就制备工艺而言,鉴于当前固态电解质膜的柔韧性不佳,固态电芯组装更多偏向叠片而非卷绕工艺,但细分工艺尚不可知;就制造装备而言,尽管固态电池与传统锂离子电池存在较大差异,但不存在根本性区别,只是在涂布、封装等工序上需要定制化的设备,而且制造环境需在更高要求的干燥间进行。
6. 全固态锂二次电池的展望
目前新能源汽车的发展已经明确上升到国家战略层面,其中动力电池是新能源汽车最关键的核心部件,其关键程度可见一斑。按照我国《节能与新能源汽车技术路线图》,2020年的纯电动汽车动力电池的能量密度目标为300Wh/kg,2025年目标为400Wh/kg,2030年目标为500Wh/kg。公开资料显示,当前采用三元正极材料和石墨负极材料的液态电解质动力锂离子电池的能量密度极限在250Wh/kg左右,而引入硅基复合材料替代纯石墨作为负极材料,液态电解质动力锂离子电池电芯的能量密度可以达到300Wh/kg,上限约为350Wh/kg(已经在特斯拉Model 3上使用的松下21700电池,正极采用NCA三元材料,负极采用硅基复合材料,能量密度已超过300Wh/kg),国内部分公司已推出300WH/kg样品电芯。
目前,在界面电阻降低,金属锂高容量、高倍率和低体积变化的解决方案,以及兼具离子电导和机械特性的固态电解质膜的成熟制备技术等方面尚缺乏有效的解决方案。